
EURURO-6169; No. of Pages 13
Platinum Priority – Collaborative Review – Kidney Cancer
Editorial by XXX on pp. x–y of this issue

A Literature Review of Renal Surgical Anatomy and Surgical

Strategies for Partial Nephrectomy

Tobias Klatte a,*, Vincenzo Ficarra b, Christian Gratzke c, Jihad Kaouk d, Alexander Kutikov e,
Veronica Macchi f, Alexandre Mottrie g, Francesco Porpiglia h, James Porter i, Craig G. Rogers j,
Paul Russo k, R. Houston Thompson l, Robert G. Uzzo e, Christopher G. Wood m, Inderbir S. Gill n

a Department of Urology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria; b Department of Urology, University of Udine, Udine, Italy;
c Department of Urology, Ludwig-Maximilians-University Munich, Munich, Germany; d Center for Advanced Laparoscopic and Robotic Surgery, Glickman

Urologic and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA; e Department of Urological Oncology, Fox Chase Cancer Center, Temple University School

of Medicine, Philadelphia, PA, USA; f Centre for Mechanics of Biological Materials, University of Padua, Padua, Italy; g OLV Robotic Surgery Institute, Aalst,

Belgium; h Department of Urology, San Luigi Gonzaga Hospital-Orbassano, University of Turin, Turin, Italy; i Swedish Urology Group, Seattle, WA, USA;
j Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA; k Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New

York, NY, USA; l Department of Urology, Mayo Medical School and Mayo Clinic, Rochester, MN, USA; m Department of Urology, University of Texas MD

Anderson Cancer Center, Houston, TX, USA; n University of Southern California Institute of Urology, Keck School of Medicine, University of Southern California,

Los Angeles, CA, USA

E U R O P E A N U R O L O G Y X X X ( 2 0 1 5 ) X X X – X X X

ava i lable at www.sc iencedirect .com

journa l homepage: www.europea nurology.com

Article info

Article history:

Accepted April 3, 2015

Keywords:

Anatomy

Partial nephrectomy

Renal function

Ischemia

Complications

Nephrometry

Imaging

Artery

Vein

Abstract

Context: A detailed understanding of renal surgical anatomy is necessary to optimize
preoperative planning and operative technique and provide a basis for improved outcomes.
Objective: To evaluate the literature regarding pertinent surgical anatomy of the kidney
and related structures, nephrometry scoring systems, and current surgical strategies for
partial nephrectomy (PN).
Evidence acquisition: A literature review was conducted.
Evidence synthesis: Surgical renal anatomy fundamentally impacts PN surgery. The
renal artery divides into anterior and posterior divisions, from which approximately five
segmental terminal arteries originate. The renal veins are not terminal. Variations in the
vascular and lymphatic channels are common; thus, concurrent lymphadenectomy is
not routinely indicated during PN for cT1 renal masses in the setting of clinically
negative lymph nodes. Renal-protocol contrast-enhanced computed tomography or
magnetic resonance imaging is used for standard imaging. Anatomy-based nephrometry
scoring systems allow standardized academic reporting of tumor characteristics and
predict PN outcomes (complications, remnant function, possibly histology). Anatomy-
based novel surgical approaches may reduce ischemic time during PN; these include
early unclamping, segmental clamping, tumor-specific clamping (zero ischemia), and
unclamped PN. Cancer cure after PN relies on complete resection, which can be achieved
by thin margins. Post-PN renal function is impacted by kidney quality, remnant quantity,
and ischemia type and duration.
Conclusions: Surgical renal anatomy underpins imaging, nephrometry scoring sys-
tems, and vascular control techniques that reduce global renal ischemia and may
impact post-PN function. A contemporary ideal PN excises the tumor with a thin
negative margin, delicately secures the tumor bed to maximize vascularized remnant
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parenchyma, and minimizes global ischemia to the renal remnant with minimal
complications.
Patient summary: In this report we review renal surgical anatomy. Renal mass imaging
allows detailed delineation of the anatomy and vasculature and permits nephrometry
scoring, and thus precise, patient-specific surgical planning. Novel off-clamp techniques
have been developed that may lead to improved outcomes.

# 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The incidence of renal tumors has been increasing over the

past several decades [1]. The majority of these tumors are

diagnosed at clinical stage T1 [2] and are amenable to

partial nephrectomy (PN), which is the accepted surgical

treatment. More recently, minimally invasive PN has

become a viable alternative to open PN (OPN) and is

routinely performed at many centers worldwide [3]. Much

effort has been made to integrate the anatomy of the renal

mass and its vasculature into current concepts [4,5]. A

detailed understanding of surgical anatomy is necessary to

optimize preoperative planning and operative technique,

thus providing a basis for maximizing oncologic and

functional outcomes. The purpose of this article is to

provide a contemporary overview of renal surgical anatomy

and anatomy-based issues for PN surgery, such as imaging,

nephrometry scoring systems, novel vascular control

techniques that reduce global renal ischemia, and factors

impacting post-PN function and oncologic outcomes.

2. Evidence acquisition

The Medline, Embase, and Web of Science databases were

searched without time limit on August 1, 2014 using the

terms ‘‘partial nephrectomy’’ OR ‘‘nephron-sparing surgery’’

in conjunction with ‘‘anatomy’’ (MeSH), ‘‘ischemia’’, ‘‘renal

function’’, ‘‘margin’’, ‘‘adrenalectomy’’, ‘‘lymphadenecto-

my’’, OR ‘‘complications’’. Both free-text protocols and

medical subject headings (MeSH) were used in Medline,

while free-text protocols were run in Embase and Web of

Science. Autoalerts in Medline were also run, and reference

lists of original articles, review articles, and book chapters

were searched for further eligible articles. The search was

limited to the English literature. Articles that did not

address the topics were excluded, and the full text of the

remaining articles was reviewed. A list of articles that were

judged to be highly relevant by the junior and senior

authors was circulated among the coauthors, and a final

consensus was reached on the structure of this review and

the articles included. In addition, during writing of the

manuscript, pertinent contemporary articles were identi-

fied in an attempt to include the most recent data.

3. Evidence synthesis

3.1. Surgical anatomy of the kidney

The right kidney is located approximately 1–2 cm lower

than the left kidney because of the location of liver. The
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diaphragm covers the upper third of the kidneys posteriorly,

where there is also a close relationship to the pleura that

extends to the level of the 12th rib. Anteriorly, the right

kidney is bordered by the liver and the right colonic flexure.

The descending part of the duodenum with the head of

pancreas overlies the right renal hilum. The left kidney is

bordered anteriorly by the left colonic flexure. The left renal

hilum is in close anatomic relation to the body of the

pancreas and the splenic vessels. The upper pole of the

kidneys abuts the adrenal gland, which may cap the kidney

or cradle the renal hilum, especially on the left. The

posterior aspect of the kidney lies on the psoas muscle

[6]. Therefore, it is important to realize that the upper pole

lies medially and in a posterior plane relative to the lower

pole. Computed tomography (CT) slices are commonly

recorded at a right angle to the body, but because of the

aforementioned angulation of the kidney, this is not

necessarily at right angles to the kidney. Thus, an upper-

pole tumor may occasionally appear on CT scan images as a

mid-renal tumor. Therefore, for accurate imaging, appro-

priate adjustment of cross-sectional CT slices is required,

taking into account the angulation of the kidney.

Gerota’s fascia encloses the kidney, adrenal gland, and

perinephric fat. Its layers are fused superiorly, laterally, and

medially, but not inferiorly. Classically, the structures of the

renal hilum are, from anterior to posterior, a single renal

vein, a single renal artery, and the renal pelvis. The hilar

region is rotated somewhat anteriorly because of the psoas

muscle [7,8].

3.1.1. Arterial system

In approximately 75% of cases, a single renal artery arises

bilaterally from the lateral portion of the abdominal aorta

immediately caudal to the origin of the superior mesenteric

artery. Duplication of renal arteries is more common on the

right side (Fig. 1); duplicate arteries are often similar in

caliber, with the exception of accessory renal arteries, which

occur in approximately 25% of patients. These accessory

arteries usually arise from the aorta and commonly subtend

the poles. An accessory artery is defined as any supernumer-

ary artery that reaches the kidney. If the artery does not

enter the kidney at the hilum (eg, enters the parenchyma at a

pole), it is called aberrant. An accessory artery may therefore

be aberrant (but is not always so). Accessory arteries to the

upper pole are typically smaller in diameter than those to

the lower pole. The right renal artery passes behind the

inferior vena cava (IVC) and is typically posterior and

superior to the left and right renal veins. In approximately

30% of cases, the renal artery is located anterior to the renal

vein. The left renal artery is higher than the right [6,9].
w of Renal Surgical Anatomy and Surgical Strategies for Partial
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Fig. 1 – Computed tomography scan showing two right renal arteries. Courtesy of V. Ficarra, University of Udine, and V. Macchi, University of Padua.
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In relation to the renal pelvis, the renal artery forms an

anterior division, which carries 75% of the blood supply, and

a posterior division, which carries 25% of the blood supply.

These divisions are most often formed outside the renal

hilum [9]. Extra- and intraparenchymal arterial sections can

be distinguished (Fig. 2). Along the lateral border of the

kidney, between the arterial divisions, lies the avascular

plane (Brödel’s line), which is located in the axis of the

posterior. This avascular plane is not in the exact mid-

lateral portion of the kidney, but is located slightly

posteriorly. Brödel’s line can be used for avascular access

for anatrophic nephrolithotomy and for endophytic tumors.

From the arterial divisions, five segmental arteries

originate, including an apical, upper, middle, lower, and

posterior segmental artery (Fig. 3) [10]. The first four

segmental arteries arise from the anterior division, and the
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Fig. 2 – Anatomy of the left renal artery. Extra- and intraparenchymal arterial 

and V. Macchi, University of Padua.
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last segmental branch arises from the posterior division.

Segmental arteries are end arteries and do not provide

adequate collateral circulation. Ligation of a segmental

artery causes irreversible ischemia to that segment of the

kidney and subsequent segmental renal infarction. This

involves limited parenchymal areas in the case of an

anterior segmental artery, but occlusion of the posterior

segmental artery can result in infarction of almost the entire

posterior aspect of the kidney. A high percentage of patients

shows anatomic variants of Graves’ initial classification

[10], especially for the lower segmental artery, which may

arise from the main renal artery, its anterior division, the

upper segmental artery, or as an accessory artery from the

abdominal aorta [6].

Segmental arteries give rise to interlobar arteries at the

level of the fornix, and these continue in the interlobar
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Fig. 3 – Graves’ anatomic classification of segmental renal arteries. In addition to the classical variant, a high percentage of patients show anatomic
variations. Courtesy of V. Ficarra, University of Udine, and V. Macchi, University of Padua.
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septae between the pyramids. At the corticomedullary

junction, each interlobar artery branches into five to seven

arcuate arteries, which in turn branch into interlobular

arteries. Interlobular arteries supply the afferent glomerular

arteries.

3.1.2. Venous system

The peritubular capillary venous plexus drains through

venae rectae into the arcuate veins. Similar to the arterial

system, arcuate veins drain into the interlobular vein, which

forms several trunks (two in �50%, three in �30% of cases)

that unite as the renal vein anterior to the renal pelvis.

Anastomotic longitudinal venous arcades are present

within the kidney. These veins are not terminal, so the

major branches can be surgically ligated without the risk of

venous obstruction. A retropelvic vein, which drains some

of the posterior part of the kidney, is present in two-thirds

of cases [6].

The right renal vein drains directly into the IVC. There are

usually no tributaries; rarely, the right gonadal vein may

drain into the right renal vein. Duplication is found in

15–20% of cases. In contrast to the arterial system, isolated
Please cite this article in press as: Klatte T, et al. A Literature Revie
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accessory polar veins are a rarity. The left renal vein is

approximately two to three times longer than the right

renal vein, enters the IVC anterior to the aorta, and is

infrequently duplicated. In such instances, a retroaortic left

renal vein may be present, and is often circumaortic to

reflect branches anterior and posterior to the aorta. Left

renal vein tributaries include the gonadal vein, adrenal vein,

inferior phrenic veins, the first or second lumbar veins, and

paravertebral veins in one-third of cases. The rich anasto-

motic structure makes it possible to ligate the left renal vein

medially via IVC occlusion in the case of an IVC thrombus for

a right-sided renal cell carcinoma (RCC) or during surgery

for an abdominal aortic aneurysm [6].

3.1.3. Radially oriented intrarenal architecture

The intrarenal anatomy is radially oriented. This fact can be

taken advantage of when performing PN. The intrarenal

arteries, veins, and calyces fan out radially from the renal

hilar sinus towards the lateral convex border of the kidney.

Thus, a radial nephrotomy incision during unclamped PN is

less likely to transect a major intrarenal vessel, and may

therefore result in less bleeding than for a nonradial
w of Renal Surgical Anatomy and Surgical Strategies for Partial
.2015.04.010

http://dx.doi.org/10.1016/j.eururo.2015.04.010


E U R O P E A N U R O L O G Y X X X ( 2 0 1 5 ) X X X – X X X 5

EURURO-6169; No. of Pages 13
incision. In addition, the renal parenchyma and pyramids

are similarly radially oriented. Therefore, during enuclea-

tive PN, an appropriate enucleative plane can typically be

identified and then developed bluntly in close vicinity to the

tumor capsule. This radially oriented parenchyma lends

itself to atraumatic blunt separation of the renal parenchy-

ma rather than sharp cutting.

3.1.4. Kidney tumor-parenchyma interface

During enucleative PN, excision is performed immediately

adjacent to the tumor edge. To better inform the anatomic

and oncologic propriety of enucleative PN, histologic

examination of the tumor-parenchyma interface was

performed on 124 nephrectomy specimens [11]. Some

82% of malignant tumors had an intrarenal pseudocapsule

(PC) with a median thickness of 0.6 mm. PC invasion was

noted in 45% of the cancers overall; however, no patient had

a positive surgical margin. Inflammation, nephrosclerosis,

glomerulosclerosis, and arteriosclerosis decreased with

increasing distance from the tumor edge. The mean

arteriolar diameter decreased with tumor proximity. The

authors concluded that PN excision adjacent to the tumor

edge appears to be histologically safe. Since the peritumoral

parenchyma is histologically altered/compressed with

fewer/smaller arterioles, this appears to be a surgically

favorable plane for enucleative PN. Since 18% of cancers

lacked an intrarenal PC and 25% of pT1a cancers had

intrarenal PC invasion, extreme care is necessary to avoid

positive margins during enucleative PN [11].

3.2. Partial nephrectomy planning

3.2.1. Imaging of renal tumors and the vascular system

An understanding of the renal anatomy and vasculature is

necessary for preoperative surgical planning. Imaging must

delineate the relationship of the mass to adjacent normal

structures and demonstrate the vascularity of the tumor.

Bi- or triphasic contrast-enhanced CT of the abdomen is

the reference standard for primary imaging and staging.

According to the American College of Radiology Practice

Guidelines, the CT slice thickness should be 5 mm or less

[12]. Masses are classified as solid or cystic, with subclassifi-

cation of the latter according to Israel and Bosniak [13]. The

multidetector CT (MDCT) protocol includes a non-contrast

phase, a corticomedullary phase (after 40 s), a nephrographic

phase (90 s), and a urographic phase (7 min). Enhancement of

>15–20 Hounsfield units (HU) is considered the most

important indicator of malignancy and is best assessed in

the nephrographic phase. The corticomedullary phase is used

to assess the arterial system (number of renal arteries,

feeding mass arteries) and the urographic phase to assess

proximity to and involvement of the renal collecting system

[14]. Three-dimensional CT reconstruction depicts the

vascular and renal mass anatomy in a format familiar to

surgeons and serves to guide PN surgery, especially in

complex cases [15,16].

Although CT remains the standard for primary imaging

of renal masses, it has limited ability to characterize masses

of <1 cm in diameter and carries radiation exposure
Please cite this article in press as: Klatte T, et al. A Literature Revie
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[14]. Dual-energy CT (DECT) has the potential to lower

radiation exposure by approximately 50%. DECT involves

simultaneous acquisition of CT data at two different energy

settings. Different materials show distinct attenuation

levels at a given energy setting, allowing for material

decomposition [14]. If iodine is removed from the post-

contrast image, a virtual non-contrast image is acquired. For

characterization of renal masses, DECT has similar accuracy

to conventional two-phase CT examinations with a true

non-contrast phase [17]. Although initial data are convinc-

ing, DECT technology is not yet broadly available and

further data are required.

Macroscopic fat (less than –20 HU) can generally be

observed on CT scans of angiomyolipomas, so these can be

differentiated from other renal tumors. It is important to

note that the fat content may be difficult to diagnose in

small angiomyolipomas because of the volume averaging

effect and a proportion of angiomyolipomas are fat-poor.

Oncocytomas are typically hypervascular and homoge-

neous and may have a characteristic central stellate scar;

however, CT features cannot reliably distinguish an

oncocytoma from other renal tumors [18]. Papillary and

chromophobe RCCs generally exhibit lower and more

heterogeneous enhancement than clear-cell RCC [19,20],

but subtypes are more difficult to differentiate in small

masses. In terms of tumor size, studies indicate that CT

imaging overestimates pathologic size by a small amount.

The size tends to be overestimated small tumors and

underestimated for larger tumors [21].

Magnetic resonance imaging (MRI) is an alternative

imaging procedure and is commonly used as a problem-

solving tool in patients with indeterminate CT scans (eg, for

complex cystic lesions, very small masses, enhancement of

10–20 HU) or contrast medium allergies [22]. Compared to

CT, MRI may be better for detecting perirenal fat invasion

and evaluating the cranial and caudal extent of a venous

thrombus in the IVC, as well as delineating benign

thrombus from tumor thrombus [14]. Functional and

advanced imaging techniques such as diffusion-weighted

and perfusion-weighted imaging are expected to expand

the role of MRI in the future [23].

Renal ultrasound can distinguish cystic from solid

masses, may assist in identifying angiomyolipoma, and can

show vascularity with the additional use of ultrasound

contrast agents, including microbubbles. Because it is

both less accurate than CT or MRI and user-dependent,

ultrasound has a limited role in preoperative surgical

planning [24]. Furthermore, assessment of the IVC and

retroperitoneal nodes is often limited by bowel gas and

body habitus [14]. Intraoperative ultrasound is most

commonly used for intraoperative localization, to screen

for additional small lesions, to confirm ischemia following

clamping, to assist in obtaining negative resection margins

during PN, to enable renal mass biopsy, and to guide probe

placement for thermal ablation. Intraoperative ultrasound

reveals additional findings not observed on preoperative

imaging in approximately 10% of patients undergoing

PN. This alters surgical management in the majority of

cases [25].
w of Renal Surgical Anatomy and Surgical Strategies for Partial
.2015.04.010

http://dx.doi.org/10.1016/j.eururo.2015.04.010


Table 1 – Overview of the parameters of the RENAL and PADUA scoring systems

Variable RENAL PADUA

Maximal tumor diameter 1 point: �4 cm

2 points: >4 – <7 cm

3 points: �7 cm

1 point: �4 cm

2 points: 4–7 cm

3 points: >7 cm

Exophytic/endophytic rate 1 point: �50%

2 points: <50%

3 points: endophytic

1 point: �50%

2 points: <50%

3 points: endophytic

Collecting system Or renal sinus

1 point: proximity >7 mm

2 points: proximity 4–7 mm

3 points: proximity �4 mm

1 point: not involved

2 points: dislocated/infiltrated

Polar location 1 point: entirely above or below the polar linesa

2 points: crosses the polar line

3 points: >50% crosses the polar line or crosses

the axial renal midline or entirely between the polar lines

1 point: superior/inferior b

2 points: middle

Renal rim – 1 point: lateral

2 point: medial

Renal sinus Included in collecting system 1 point: not involved

2 points: involved

Anterior/posterior No points No points

a Polar lines are defined as the plane of the kidney above or below which the medial lip of parenchyma is interrupted by the renal sinus fat, vessels, or the

collecting system on axial imaging.
b Polar lines are defined according to the renal sinus.
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3.2.2. Nephrometry scoring systems

Anatomy-based nephrometry scores are assigned from

preoperative imaging and delineate renal mass character-

istics and the relationship to adjacent structures [26]. Use of

standardized objective and reproducible measures mini-

mizes interobserver variability. Nephrometry scores can

inform the surgeon regarding technical difficulty during PN

for a given mass, and have been correlated with ischemia

time, operation time, blood loss, complications, and the

likelihood of conversion from PN to radical nephrectomy

(RN). Nephrometry scoring systems can assist in clinical

decision-making on RN versus PN or open versus minimally

invasive PN [27].

3.2.2.1. RENAL score. The RENAL nephrometry score consists of

five anatomic radiologic properties: (R)adius/maximal tumor

diameter, (E)xophytic/endophytic properties, (N)earness to

the collecting system or sinus, (A)nterior(a)/posterior(p)/not

anterior or posterior (x) descriptor, and (L)ocation relative to

the polar line. The polar lines are defined by the planes in

which the medial lip of parenchyma is first seen. The suffix

hilar (h) is added for tumors that abut the main renal artery or

vein (Table 1) [28].

For each variable except A, one to three points are

assigned, which yield a total of 3 points for the least

complex and 12 points for the most complex mass. The score

is read as each individual variable (eg, 1 + 2 + 2 + A + 3)

summed to a score and followed by the polar location

(eg, 8A). Masses are classified as low complexity (RENAL

score 4–6), moderate complexity (score 7–9), or high

complexity (score 10–12). An online tool has been devel-

oped to facilitate calculation at the point of care (www.

nephrometry.com).

3.2.2.2. PADUA classification. The Preoperative Aspects and

Dimensions Used for an Anatomical (PADUA) classification
Please cite this article in press as: Klatte T, et al. A Literature Revie
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consists of six scoring parameters and an anterior/posterior

descriptor. The variables include polar location, exophytic/

endophytic rate, renal rim, involvement of the renal sinus,

involvement of the urinary collecting system, and maximal

tumor size (Table 1) [29]. The polar lines are defined as the

upper and lower margins of the renal sinus fat. The

classification is given as a single sum of these parameters,

with a minimum score of 6 and a maximum of 14. Stratifi-

cation may be according to low complexity (score 6–7),

moderate complexity (score 8–9), or high complexity (score

10–14) given the fact that this correlates with the risk of

overall complications [29].

3.2.2.3. Centrality index. The centrality index (CI) differs

substantially from the RENAL score and PADUA classifica-

tion. CI is a continuous index based on tumor size and

distance from the periphery of the tumor to the center of the

kidney [30], which are thought to be the most important

factors that determine resection difficulty. CI is defined as

the ratio of c to the tumor radius r (diameter/2). The variable

c equalizes the distance from the tumor center to the kidney

center and may be calculated according to the Pythagorean

theorem on axial images. For a tumor in the kidney center,

CI = 0. CI increases with increasing distance of the tumor

periphery from the kidney center, and surgical resection

becomes easier. An online spreadsheet facilitating CI

calculations is available (http://my.clevelandclinic.org/

Documents/Urology/CentralityIndex2.xls).

3.2.2.4. Contact surface area. The larger the surface area of

contact between a tumor and its surrounding uninvolved

renal parenchyma, the greater are the amount of kidney

tissue excised and the extent of renorrhaphy required

during PN surgery. Contact surface area (CSA) is a

descriptive, CT-based radiologic data point that may better

reflect tumor complexity by numerically combining two
w of Renal Surgical Anatomy and Surgical Strategies for Partial
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Table 2 – Selected validation studies for the RENAL score, PADUA classification, and C index

Reference n Complications Ischemia
time

Blood loss LOS

RENAL score

Hayn et al [112] 141 LPN NS + + +

Simhan et al [96] 216 OPN, 174 RPN Major (CCS 3–5) + + +

Hew et al [33] 134 PN + + NA NA

Kruck et al [113] 81 LPN NS NS + +

Lavallée et al [35] 78 OPN NA + NA NA

Bylund et al [32] 124 LPN, 25 RPN, 13 OPN NA + + NA

Png et al [36] 83 RPN NS + NS NA

Long et al [114] 159 OPN, 18 LPN NS NS NS NS

Stroup et al [106] 153 OPN, 100 LPN, 31 RPN Urine leak, but NS overall NA NA NA

Mayer et al [115] 55 RPN, 12 LPN NA + NS NA

Liu et al [95] 128 LPN, 53 RPN + + NS NS

Altunrende et al [116] 181 RPN NA NS NA NA

Mufarrij et al [117] 92 RPN NS Trend

(p = 0.07)

Trend

(p = 0.07)

NS

Bruner et al [118] 155 PN Urine leak NA NA NA

Okhunov et al [34] 101 LPN NS + NS NS

PADUA classification

Hew et al [33] 134 PN + + NA NA

Kruck et al [113] 81 LPN – NS + +

Lavallée et al [35] 78 OPN NA + NA NA

Bylund et al [32] 124 LPN, 25 RPN, 13 OPN NA + NS NA

Okhunov et al [34] 101 LPN NS + NS NS

Ficarra et al [94] 347 RPN + + + NA

Waldert et al [119] 186 OPN, 54 LPN + + NA NA

Kong et al [120] 136 OPN, 59 LPN + + NS NA

Mottrie et al [121] 62 RPN + + + NA

Tyritzis et al [122] 74 OPN + NA NA NA

Minervini et al [123] 244 OPN + NA NA NA

C index

Lavallée et al [35] 78 OPN NA Trend

(p = 0.06)

NA NA

Bylund et al [32] 124 LPN, 25 RPN, 13 OPN NA + NS NA

Okhunov et al [34] 101 LPN NS + NS +

LOS = length of hospital stay; LPN = laparascopic partial nephrectomy; OPN = open partial nephrectomy; RPN = robot-assisted partial nephrectomy;

+ = statistically significant association; NS = not significant; NA = not assessed; CCS = Clavien-Dindo classification system.
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important aspects, tumor size and percentage endophytic

component, into a single radiologically measurable param-

eter. Using three-dimensional rendering software, the

tumor circumference and its intraparenchymal component

are manually rendered. Image-processing software then

automatically calculates the volume of the tumor and its

intraparenchymal component. The total surface area (TSA)

of the tumor is calculated using the formula 4pr2 (r = tumor

radius). CSA is derived by multiplying TSA by the percentage

intraparenchymal component. For 162 tumors, CSA >20 cm2

predicted adverse tumor characteristics (greater tumor size,

volume, complexity) and perioperative outcomes (more

parenchymal volume loss, blood loss, complications) com-

pared to CSA <20 cm2. Interobserver concordance of CSA was

excellent [31].

3.2.2.5. Summary of studies on nephrometry scoring systems. As

shown in Table 1, there are few differences in the RENAL and

PADUA scores for a given renal mass. The scores are highly

correlated (correlation coefficient 0.8) [32]. Both systems

assign almost the same points for maximal tumor size.

The only difference is for a tumor with a maximal size of

7.0 cm, which would be scored as 2 according to RENAL and

3 according to PADUA. In the PADUA classification, the renal
Please cite this article in press as: Klatte T, et al. A Literature Revie
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sinus and collecting system are scored separately on a scale

of 1–2, compared to a single three-tiered variable in the

RENAL system. Because of differing definitions of polar

lines, the polar location may be assigned differently

(Table 1). The two systems show good agreement, with

correlation of 0.7–0.9 [33–37]. Although CI contains only

two variables, the coefficients for correlation with the

RENAL and PADUA scores are remarkable (0.4–0.6) [32].

While CSA correlates well with the RENAL, PADUA, and CI

systems, initial data suggest that CSA may be more accurate

in predicting certain perioperative events [31].

There have been numerous studies on nephrometry

scoring systems. Detailed descriptions are beyond the scope

of this article. Although there are conflicting data, the

majority of studies indicate that the systems are similarly

effective in predicting the risk of overall complications,

estimated blood loss, length of hospital stay, and ischemia

time (Table 2). Several reports have correlated nephrometry

scores with postoperative renal function [32,34,38].

Nephrometry parameters have been associated with

pathological factors. Based on parameters of the RENAL

score, nomograms predicting malignancy and high grade

were developed [39]. For both nomograms, maximal tumor

size (variable R) was the most important nephrometric
w of Renal Surgical Anatomy and Surgical Strategies for Partial
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variable. The area under the curve was 73% and 76% for

malignancy and high grade, respectively. External validation

revealed an area under the curve of 73% for prediction of

high-grade disease [40]. Likewise, recent studies showed that

higher tumor complexity according to the RENAL score is

associated with high-grade disease and clear-cell subtype

[41,42].

3.3. Optimizing PN outcomes

3.3.1. Optimizing functional outcomes of PN

Multiple factors impact renal functional outcomes after

PN, including preoperative renal function, comorbidity,

age, gender, tumor size, percentage volume preservation,

and ischemia time [43]. Overall, the two surgically

relevant principles for optimizing post-PN functional

outcomes are to maximize volume preservation and

minimize ischemia. The volume of parenchyma preserved

is potentially more important than short-duration ische-

mia time, especially in healthy patients with normal

function at baseline [44,45].

3.3.1.1. Maximizing volume preservation. As discussed in Section

3.3.2, the margin width should be minimized while

ensuring a negative margin [3]. Generalized through-and-

through oversuturing of the PN bed may be minimized to

reduce ischemic damage to adjacent healthy remnant

parenchyma, although this concept has not been proven.

Suturing of the PN bed may even be avoided in selected

cases [46]. There are several methods available to evaluate

the amount of renal parenchyma preserved. Subjective

surgeon assessment of preserved volume may provide an

estimate comparable to more time-consuming imaging

techniques, including cylindrical measurements obtained

from preoperative and postoperative CTs [47] or three-

dimensional imaging [48].

3.3.1.2. Minimizing ischemia. During PN, the main artery is

routinely clamped to minimize blood loss and create a

relatively bloodless field for tumor excision and renal

reconstruction. However, arterial clamping leads to ische-

mic damage of the renal parenchyma. Several models have

been proposed to study the effects of ischemia on renal

function, such as the solitary kidney [49]. There is no

agreement on the precise cutoff time for the onset of

durable renal damage during warm ischemia [50–53]. Is-

chemia time should be interpreted as a continuum whereby

increasingly prolonged ischemia times are more likely to

cause acute kidney dysfunction [49,53]. A recent report

indicated that patients with baseline medical chronic

kidney disease had worse long-term outcomes after PN

than those with surgically induced chronic kidney disease

[54]. Elderly patients with comorbidities (diabetes, hyper-

tension) and pre-existing renal dysfunction at baseline are

likely to have compromised kidneys with glomerulone-

phro-arteriosclerosis due to medical renal disease. These

compromised kidneys are proboably more acutely suscep-

tible to even shorter ischemic insults compared to healthy

younger individuals with normal kidney function at
Please cite this article in press as: Klatte T, et al. A Literature Revie
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baseline. Thus, recent efforts continue to be directed

towards minimizing ischemic injury.

The classical strategy to limit ischemic damage is the

induction of hypothermia (cold ischemia). Surface cooling

with ice slush decreases renal energy expenditure and

partly ameliorates the adverse impact of warm ischemia

and reperfusion injury [55,56]. A nonrandomized compara-

tive study revealed a similar decrease in glomerular

filtration rate (GFR) at 3 mo after warm or cold ischemia,

although the median cold ischemia time was substantially

longer (45 vs 22 min) [44]. Many surgeons prefer to use

mannitol and/or furosemide during PN, which may opti-

mize reperfusion and increase diuresis [57]. However,

several recent studies do not support the use of mannitol

during PN [58], even in solitary kidneys [59]. Cooling with

ice slush is the classical strategy for cold ischemia during

OPN [56], but has also been applied in minimally invasive

approaches [60,61].

As routine induction of cold ischemia is still technically

arduous, several anatomic methods have been proposed to

reduce the extent and duration of warm ischemia. From a

practical perspective, the most technically relevant, surgi-

cally modifiable factor that impacts remnant function after

PN is the duration or extent of ischemia. Global renal

ischemia time is significantly reduced by early unclamping

of the main renal artery, which is performed immediately

after placement of the initial central running suture

[62]. Compared to standard clamping in PN, warm ischemia

times are reduced by >50% (mean 31.1 vs 13.9 min), while

estimated blood loss and bleeding complications are similar

[62]. In another study, mean warm ischemia time was

reduced from 28 to 18.5 min [63].

Clamping of the main artery results in the greatest

ischemic insult, which can be reduced by selective clamping

of only the pertinent segmental artery(ies) [64]. The

selective clamping technique is primarily used in minimally

invasive PN, but Nohara et al [65] were also able to apply

selective arterial clamping during OPN; however, a seg-

mental renal artery could be isolated in only half of cases.

Selective arterial clamping may not be feasible in certain

instances such as dense or adherent perirenal fat or short

segmental arteries [64].

Clamping of distally located, tumor-specific, higher-

order segmental renal artery branches in minimally

invasive PN has been described [66]. Zero-ischemia PN

refers to superselective clamping of tumor-specific tertiary

or quaternary artery branches. In another series, this was

performed successfully in 84% of patients undergoing

laparascopic PN (LPN). Compared to clamping of the main

renal artery, blood loss was greater (238 vs 154 ml), but

patients who had segmental renal artery clamping had

significantly better renal function at 3–6 mo [67,68]. Since

arterial blood flow to the remnant kidney is not interrupted,

global renal ischemia is eliminated [69,70]. Tumor-specific

arterial branches are microdissected and superselectively

clamped with micro-bulldog clips. Selective arterial control

is confirmed intraoperatively by color Doppler sonography

[69,70], hyperspectral imaging [71,72], or robotic vascular

fluorescence imaging [73]. In an initial study of 15 patients,
w of Renal Surgical Anatomy and Surgical Strategies for Partial
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there was no change in estimated GFR (eGFR) [66]. Addi-

tional studies showed that the ipsilateral renal function

decreased by approximately 10% [74]. The rate of major and

minor complications was 0% and 18%, respectively [70],

which is comparable to other techniques. Oncologic control

with negative surgical margins was achieved in all patients

[66,70,74]. Zero-ischemia minimally invasive PN appears

best suited for medially located or hilar tumors [66].

If the tumor has favorable anatomic features (small size,

exophytic lesion, low nephrometry scores), PN may be

performed without any vascular clamping whatsoever.

Tumor excision and renal reconstruction are performed

unclamped. This approach can reduce the incidence of acute

renal failure in patients with a solitary kidney [75]. There

have been several studies on this approach; the majority of

tumors were removed by OPN [76,77]. In one report on

101 patients, LPN was performed without clamping and

suturing; however, more than 95% of the tumors had low

nephrometry scores. Split-renal functional outcomes at

1 yr were unchanged from preoperative data [46]. Studies

revealed an increase in estimated blood loss for this

approach without an increase in transfusion rates [78],

whereas others seemed to show increased transfusion

rates [77]. Clampless minimally invasive PN may be aided

by prior superselective embolization of tumor-specific

arteries [79,80], prior radiofrequency ablation [81], and

parenchymal clamping [82] in select cases. In minimally

invasive PN for selected tumors, a bolster can be omitted

[83]. The defect can be closed with an intraparenchymal

running suture and thrombin sealant. This obviates the

need for parenchymal renorrhaphy suturing and shortens

ischemia time.

The issue of improving renal functional outcomes by

decreasing warm ischemia time is not yet settled. Several

studies indicate that the amount of renal parenchyma

preserved, but not the type or duration of ischemia, is

significant in multivariate analysis [44,45]. Conversely, a

recent report indicated that decreasing warm ischemia

times resulted in superior renal functional outcomes after

correcting for volume loss. In serial cohorts with similar

preserved parenchyma volumes and ischemia times of 36,

32, 15, and 0 min, actual eGFR outcomes exceeded volume-

predicted eGFR outcomes only in the zero-ischemia cohort

(–9.5%, –11%, –0.9%, and +4.2%, respectively; p < 0.001)

[84]. Further prospective studies are necessary to clarify

this issue.

3.3.2. Optimizing oncologic outcomes of PN

Positive surgical margins occur in approximately 3% of cases

after PN [85]. Historically, a 1-cm rim of healthy parenchy-

ma was recommended to allow optimal local tumor control

[86]. The width of the negative margin does not affect local

tumor control [87]. In patients with a positive margin, only

7% of reoperated renal remnants had viable cancer cells

[88]. Thus, the width of the negative margin can be kept to a

thin, uniform rim of normal parenchyma. Intraoperative

frozen section analysis is not definitive and has limited

clinical significance [89], so can be omitted in the setting of

complete gross resection.
Please cite this article in press as: Klatte T, et al. A Literature Revie
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Enucleative PN (tumor enucleation) along the natural

plane between the tumor PC and renal parenchyma is an

alternative approach for preserving the maximal amount of

renal parenchyma [90]. There have been some doubts

regarding local tumor control, but data from nonrandomized

observational studies indicate similar oncologic outcomes

compared to RN in appropriately selected patients [91]. How-

ever, it is noteworthy that some tumors do not have a PC, and

thus may not qualify for enucleation [92]. Even if the tumor

penetrates through the pseudocapsule in healthy parenchy-

ma, enucleation with a negative margin status can be

achieved [93]. Enucleation may be accompanied by diather-

my or laser ablation of the tumor bed.

3.3.3. Minimizing PN complications

The two main procedure-related renal complications of

PN are hemorrhage and urinary leakage. Risk factors for

complications can be classified as anatomic, surgical, or

patient-related. Anatomic risk factors are summarized in

the nephrometry scoring systems, which correlate with the

overall risk for complications [94–96]. Anatomic and

patient-related factors cannot be modified, but can guide

the surgical approach.

The incidence of complications is well documented in

the prospective EORTC 30904 trial. Perioperative blood loss

was <0.5 l in 17.1%, 0.5–1.0 l in 9.7%, and >1.0 l in 3.1% of

cases [97]. In addition to coagulopathy and intraoperative

vascular injuries as patient-related and surgical risk factors,

proximity to the collecting system [95] and tumor size [98]

are established anatomic risk factors for perioperative

hemorrhage (intra- and postoperative). In a multicenter

study of 730 elective OPNs, the rate of blood transfusions for

tumors �4 cm and >4 cm was 6.3% and 14.8%, respectively

[98]. ASA score �3 (OR 2.9) and smoking (OR 3.5) were

identified as additional patient-related risk factors for blood

transfusion following LPN [99]. LPN appears to be associat-

ed with lower intraoperative blood loss, but a higher rate

of postoperative hemorrhage [100]. Most patients with

postoperative hemorrhage can be managed conservatively;

some require embolization and a minority need reoperation

[100,101]. Precise operative technique and intraoperative

hemostasis are cornerstones in preventing postoperative

hemorrhage. Hemostatic agents and tissue sealants are

frequently used as an adjunct to conventional hemostasis

by coagulation and suturing, especially after LPN [102]. They

improve hemostasis [103,104], but there is a lack of data

from randomized studies.

Urinary leakage occurs in approximately 4–5% of cases

[97,105]. Proximity to the collecting system, and thus a

higher nephrometry score, is associated with postoperative

urinary leakage [106]. Tumor size is another main risk

factor, with the incidence increasing twofold for tumors

>2.5 cm [105]. Urinary leakage can be managed conserva-

tively with a ureteral stent or percutaneous drainage

[101]. Preoperative insertion of a ureteral catheter allows

retrograde filling to identify opening of the urinary

collecting system, although this did not decrease the rate

of postoperative urine leaks [107]. A renal pelvic anatomy

score (RPS) has been developed [108] and validated
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[96,109]. The RPS is defined as the percentage of renal

pelvis inside the renal parenchyma volume, categorized as

intraparenchymal (>50%) or extraparenchymal (<50%)

renal pelvis. Intraparenchymal renal pelvic anatomy is

associated with a markedly higher risk of urinary leakage,

which in turn may guide perioperative management

[108,109].

Reporting of composite outcomes of PN using a trifecta

system (negative margins, functional preservation, no

urologic complications) has recently been proposed and

is likely to increase in relevance [84]. Importantly, the

definition of trifecta outcomes is not standardized and

several different criteria have been used [84,110,111].

4. Conclusions

Over the past decade, PN surgery has been evolving towards

an ideal PN. Renal mass imaging allows detailed delineation

of the anatomy and vasculature and permits nephrometry

scoring, and thus precise, patient-specific surgical planning.

Novel techniques have been developed that minimize

global renal ischemia during PN. A contemporary ideal

PN excises the tumor with a thin negative margin, precisely

secures the tumor bed, and reduces global ischemia to the

renal remnant with minimal complications.
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