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The key conclusions of most medical studies are based on

the results of statistical analysis, yet there is wide

acknowledgment that standards of statistical analysis and

reporting are far from ideal. It has been reported that a large

proportion of studies do not include an author with formal

quantitative training and that statistical errors are ubiqui-

tous, with typically more than half of any given sample of

papers including important statistical errors (some exam-

ples of this type of empirical research are included in the

Appendix).

In this paper, we provide guidelines for statistical

analysis and reporting. The guidelines were based on a

review of close to 50 papers published in or submitted to

European Urology. This review confirmed previous findings

that published studies are prone to statistical errors: The

first 14 published papers we reviewed had at least one

statistical error.

These guidelines are very much directed toward the sort

of papers typically submitted to European Urology. This

means that there are several guidelines on prediction

models but none on genomic discovery. Many of the

guidelines specify analyses or methods of reporting

statistics that should be avoided. We take the approach

of focusing on the don’ts rather than the do’s because

although it is generally difficult to specify what constitutes

good science, there is often widespread agreement on what

would be bad science. As a simple example, there is

considerable disagreement on the best methods for analysis

of randomized trials with repeated measures of a continu-

ous end point, such as when a generalized estimating

equations approach should be used. What is not in doubt,

however, is that regression approaches are preferable to

unadjusted analyses, and that x2 has no role at all.

Another notable aspect of this paper is that it is without

references. This is because many of the recommendations are

seen as routine common sense by practicing statisticians, and
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citations, if available, would merely be to a second

statistician’s opinion. For instance, it is not clear to us how

adding citations to a guideline to avoid inappropriate levels of

precision would be of benefit. The paper is meant to be

didactic: Readers who question the rationale of a guideline

are welcome to write to the authors.

1. The golden rule

1.1. Break any of the guidelines if it makes scientific sense to do

so

Science varies too much to allow methodological or

reporting guidelines to apply universally.

2. Reporting of design and statistical analysis

2.1. Follow existing reporting guidelines for the type of study

you are reporting, such as CONSORT for randomized trials or

ReMARK for marker studies

Statisticians and methodologists have contributed exten-

sively to a large number of reporting guidelines. The first is

widely recognized to be the Consolidated Standards of

Reporting Trials (CONSORT) statement on the reporting of

randomized trials, but there are now a large number

covering a wide variety of different types of study.

Reporting guidelines can be downloaded from the Equator

Web site (Appendix).

2.2. Describe the practical steps of randomization in

randomized trials

Although this reporting guideline is part of the CONSORT

statement, it is so critical and so widely misunderstood that
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it bears repeating. The purpose of randomization is to

prevent patient selection. This can be achieved only if those

consenting patients cannot guess a patient’s allocation

before registration in the trial or change it afterward. This

safeguard is known as allocation concealment. Stating

merely that ‘‘a randomization list was created by a

statistician’’ or that ‘‘envelope randomization was used’’

does not ensure allocation concealment: A list could have

been posted in the nurse’s station for all to see; envelopes

can be opened and resealed. Investigators need to specify

the exact logistical steps taken to ensure allocation

concealment. The best method is to use a password-

protected computer database.

2.3. The statistical methods should describe the study questions

and the statistical approaches used to address each question

Many statistical methods sections state something like,

‘‘Mann-Whitney was used for comparisons of continuous

variables and Fisher’s exact for comparisons of binary

variables.’’ This says little more than ‘‘the inference tests

used were not grossly erroneous for the type of data.’’

Instead, statistical methods sections should lay out each

primary study question separately: Carefully detail the

analysis associated with each, and describe the rationale for

the analytic approach if this is not obvious or if there are

reasonable alternatives.

2.4. The statistical methods should be described in sufficient

detail to allow replication by an independent statistician given the

same data set

Vague reference to ‘‘adjusting for confounders’’ or ‘‘nonlin-

ear approaches’’ is insufficiently specific to allow replica-

tion, a cornerstone of science.

3. Inference and p values

3.1. Do not accept the null hypothesis

In a court case, defendants are declared guilty or not guilty;

there is no verdict of ‘‘innocent.’’ Similarly, in a statistical

test, the null hypothesis is rejected or is not rejected. If the p

value is 0.05 or higher, investigators should avoid conclu-

sions such as ‘‘the drug was ineffective,’’ ‘‘there was no

difference between groups,’’ or ‘‘response rates were

unaffected.’’ Instead, authors should use phrases such as

‘‘we did not see evidence of a drug effect,’’ ‘‘we were unable

to demonstrate a difference between groups,’’ or simply

‘‘there was no significant difference in response rates.’’

3.2. P values just above 5% are not a trend, and they are not

moving

Avoid saying that a p value such as 0.07 shows a ‘‘trend’’

(which is meaningless) or ‘‘approaches statistical signifi-

cance’’ (because if you come back and look the next day, the

p value will not be any closer to 0.05). Alternative language

might state, ‘‘Although we saw some evidence of improved
response rates in patients receiving the novel procedure,

differences between groups did not meet conventional

levels of statistical significance.’’

3.3. Take care when reporting multiple p values

The more questions you ask, the more likely you are to get a

silly answer to at least one of them. For example, if you

report p values for five independent true null hypotheses,

the probability that you will falsely reject at least one is not

5% but >20%. Although formal adjustment of p values is

appropriate in some specific cases, such as genomic studies,

a more common approach is simply to interpret p values in

the context of multiple testing. For instance, if an

investigator examines the association of 10 variables with

three different end points, thereby testing 30 separate

hypotheses, a p value of 0.04 should not be interpreted in

the same way as if a paper contained only a single p value of

0.04.

3.4. Do not report separate p values for each of two different

groups to address the question of whether there is a difference

between groups

One scientific question means one statistical hypothesis

tested by one p value. To illustrate the error of using two

p values to address one question, take the case of a

randomized trial of drug versus placebo to reduce voiding

symptoms, with 30 patients in each group. The authors

might report that symptom scores improved by 6 points

(standard deviation [SD]: 14) in the drug group ( p = 0.03 by

one-sample t test) and 5 points (SD: 15) in the placebo

group ( p = 0.08); however, the study hypothesis concerns

the difference between drug and placebo. To test a single

hypothesis, a single p value is needed. A two-sample t test

for these data gives a p value for 0.8—unsurprising, given

that the scores in each group were virtually the same—

confirming that it would be unsound to conclude that the

drug was effective based on the finding that change was

significant in the drug group but not in placebo controls.

3.5. Use interaction terms in place of subgroup analyses

A similar error to the use of separate tests for a single

hypothesis is when an intervention is shown to have a

statistically significant effect in one group of patients but

not in another. The correct approach is to use what is known

as an interaction term in a statistical model. For instance, to

determine whether a drug reduced pain scores more in

women than in men, the model might be as follows: final

pain score = b1 baseline pain score + b2 drug + b3 sex + b4

drug � sex.

3.6. Do not report p values or confidence intervals for

differences in discrimination for nested prediction models

A common research question in urology is whether a novel

predictor (eg, results of a genetic test) adds information to

standard clinical predictors (eg, stage and tumor size). It is
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good practice to assess whether the new predictor is

statistically significant in a multivariable model that

includes the established predictors and to report a statistic

such as the area under the curve (AUC) or the concordance

index for both models. However, it is statistically unsound

to use the standard method, known as Delong, Delong and

Clarke-Pearson, to determine whether the increase in

discrimination is statistically significant or to calculate a

95% confidence interval (CI) for the increment in discrimi-

nation.

3.7. Tests for change over time are generally uninteresting

A common analysis is to conduct a paired t test comparing,

say, erectile function at baseline with erectile function after

5 yr of follow-up. The null hypothesis in this example is that

‘‘erectile function does not change over time,’’ which is

known to be false. Investigators are encouraged to focus on

estimation rather than inference, reporting, for example,

the mean change over time along with a 95% CI.

3.8. Do not apply statistical tests to determine the type of

analysis to be conducted

Numerous statistical tests are available that can be used to

determine how a hypothesis test should be conducted.

For instance, investigators might conduct a Shapiro-Wilk

test for normality to determine whether to use a t test or a

Mann-Whitney test, calculate Cochran’s Q to decide

whether to use a fixed- or random-effects approach in a

meta-analysis, or use a t test for between-group differences

in a covariate to determine whether that covariate should

be included a multivariable model. The problem with these

sorts of approaches is that they are often testing a null

hypothesis that is known to be false; for instance, no data

set perfectly follows a normal distribution. Moreover, it is

often questionable that changing the statistical approach in

the light of the test is actually of benefit: Statisticians are far

from unanimous as to whether Mann-Whitney is always

superior to a t test when data are non-normal, or that fixed

effects are invalid under study heterogeneity, or that the

criterion of adjusting for a variable should be whether it is

significantly different between groups. Investigators should

generally follow a prespecified analytic plan, altering the

analysis only if the data unambiguously point to a better

alternative.

4. Reporting of study estimates

4.1. Use appropriate levels of precision

Reporting a p value of 0.7345 suggests that there is an

appreciable difference between p values of 0.7344 and

0.7346. Reporting that 16.9% of 83 patients responded

entails a precision (to the nearest 0.1%) that is nearly 200

times greater than the width of the confidence interval

(10%–27%). Reporting in a clinical study that the mean

calorie consumption was 2069.9 suggests that calorie

consumption can be measured that precisely by a food
questionnaire. Some might argue that being overly precise

is irrelevant because the extra numbers can always be

ignored. The counterargument is that investigators should

think very hard about every number they report rather than

just carelessly cutting and pasting numbers from the

statistical software printout. As a general rule:
� R
eport p values to a single significant figure unless the

p value is close to 0.05, in which case, it is reasonable to

report two significant figures. Do not report ‘‘not

significant’’ for p values of 0.05 or higher. Very low

p values can be reported as p < 0.001 or similar. A p value

can indeed be 1, although some investigators prefer to

report this as>0.9. For instance, the following p values are

reported to appropriate precision: 0.3, 0.004, <0.001,

0.045, 0.13, 1, 0.5.
� R
eport percentages, rates, and probabilities to two

significant figures, for example, 75%, 3.4%, 0.13%.
� T
here is usually no need to report estimates to more than

three significant figures.
� H
azard and odds ratios are normally reported to two

decimal places, although this can be avoided for high odds

ratios (eg, 18.2 rather than 18.17).

4.2. Do not treat categorical variables as continuous

A variable such as Gleason score can be scored as 5, 6, 7, 8, 9,

and 10, but it is not true that the difference between 8 and

7 is half as great as the difference between 7 and 5. Variables

such as Gleason score should be reported as categories

(eg, 40% Gleason�6, 40% Gleason 7, 20% Gleason�8) rather

than as a continuous variable (eg, mean Gleason score of

7.2). Similarly, categorical variables such as Gleason score

should be entered into regression models not as a single

variable (eg, a hazard ratio of 1.5 per 1-point increase in

Gleason score) but as multiple categories (eg, hazard ratio of

1.6 comparing Gleason 7 with Gleason 6 and hazard ratio of

3.9 comparing Gleason 8 with Gleason 6).

4.3. For time-to-event variables, report the number of events

but not the rate

Take the case of a study reporting that ‘‘of 60 patients

accrued, 10 (17%) died.’’ Although it is important to report

the number of events, patients entered the study at different

times and were followed for different periods; therefore, the

reported 10% rate is meaningless. The standard statistical

approach to time-to-event variables is to calculate proba-

bilities, such as the risk of death being 60% by 5 yr, or the

median survival—the time at which the probability of

survival first drops below 50%—being 52 mo.

4.4. In time-to-event analyses, report median follow-up for

patients without the event or the number followed without an

event at a given follow-up time

It is often useful to describe how long a cohort has been

followed. To illustrate the appropriate methods of doing so,

take the case of a cohort of 1000 pediatric cancer patients
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treated in 1970 and followed to 2010. If the cure rate was

only 40%, the median follow-up for all patients might be

only a few years, whereas the median follow-up for patients

who survived was 40 yr. This latter statistic gives a much

better impression of how long the cohort had been

followed. Now assume that in 2009, a second cohort of

2000 patients was added to the study. The median follow-

up for survivors will now be around a year, which, again, is

misleading. An alternative would be to report a statistic

such as ‘‘300 patients have been followed for more than

35 years.’’

4.5. For time-to-event analyses, avoid reporting mean follow-

up or survival time, or estimates of survival in those who had the

event

All three estimates are problematic in the context of

censored data.

4.6. For descriptive statistics, median with quartiles is

preferred; range should be avoided

The median and quartiles provide all sorts of useful

information, for instance, that 50% of patients had values

above the median or between the quartiles. The range gives

the values of just two patients and so is generally

uninformative about the data distribution.

4.7. Avoid categorization of continuous variables

A common approach to a variable such as age is to define

patients as either old (aged �60 yr) or young (aged < 60 yr)

and then enter age into analyses as a categorical variable,

reporting, for example, that ‘‘patients aged 60 years and

older had twice the risk of an operative complication than

patients younger than 60 years.’’ In epidemiologic and

marker studies, a common approach is to divide a variable

into quartiles and report a statistic such as a hazard ratio for

each quartile compared with the lowest (reference)

quartile. This is problematic because it assumes that all

values of a variable within a category are the same. For

instance, it is likely not the case that a patient aged 65 yr has

the same risk as a patient aged 90 yr but a different risk than

a patient aged 64 yr. It is generally preferable to leave

variables in continuous form, reporting, for instance, how

risk changes with a 10-yr increase in age.

4.8. The association between a continuous predictor and

outcome can be demonstrated graphically, particularly by using

nonlinear modeling

Much high school math is based around the relationship

between y and x, plotted graphically as a line, with a

scatterplot added in some cases. This also holds true for

many scientific studies. In the case of a study of age and

complication rates, for instance, an investigator could plot

age on the x-axis against risk of a complication on the y-axis

and show a regression line, perhaps with a 95% CI. Nonlinear

modeling is often useful because it avoids assuming a linear
relationship and allows the investigator to determine

questions such as whether risk starts to increase dispro-

portionately beyond a given age.

4.9. Report confidence intervals for the main estimates of

interest

A clinical study typically focuses on a limited number of

scientific questions, each associated with an estimate, such

as the AUC of a statistical model to predict biopsy outcome,

the difference in rates of an adverse event comparing two

different surgical techniques, or the hazard ratio of a risk

factor for disease recurrence. Authors should generally

report a 95% CI around these key estimates but not other

estimates given in a paper. For instance, in the study

comparing the two surgical techniques, the authors might

report adverse event rates of 10% and 15%; however, the key

estimate in this case is the difference between groups, so

this estimate, 5%, should be reported along with a 95% CI

(eg, 1–9%). Confidence intervals should not be reported for

the estimates within each group (eg, rate in group A of 10%

with 95% CI of 7%–13%). Similarly, confidence intervals

should not be given for statistics such as average age or

gender ratio.

4.10. Consider the impact of missing data and patient selection

It is rare that data are obtained from all patients in a study. A

typical paper might report, for instance, that of 200 patients,

8 had data missing on important baseline variables and 34

did not complete the end-of-study questionnaire, leading to a

final data set of 158. Similarly, many studies include a

relatively narrow subset of patients, such as 50 patients

referred for imaging before surgery of the 500 treated

surgically during that time frame. In both cases, it is worth

considering analyses to investigate whether patients with

missing data or who were not selected for treatment were

different in some way from those who were included in the

analyses. Although statistical adjustment for missing data is

complex and is warranted only in a limited set of

circumstances, basic analyses to understand the character-

istics of patients with missing data are relatively straightfor-

ward and are often helpful.

5. Multivariable models and diagnostic tests

5.1. Multivariable analysis is not a magic wand

Some investigators assume that multivariable adjustment

‘‘removes confounding’’ or ‘‘makes groups similar.’’ There

are two problems. First, the value of a variable recorded in a

data set is often approximate and so may mask differences

between groups. For instance, clinical stage might be used

as a covariate in a study comparing treatments for localized

prostate cancer, but stage T2c might constitute a small

nodule on each prostate lobe or, alternatively, most of the

prostate consisting of a large, hard mass. The key point is

that if one group has more T2c disease than the other, it is

also likely that those with T2c disease in that group will fall
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toward the more aggressive end of the T2c spectrum.

Multivariable adjustment has the effect of making the rates

of T2c in each group the same but does not ensure that the

type of T2c is identical. Second, a model adjusts for only a

small number of measured covariates. That does not

exclude the possibility of important differences in unmea-

sured (or even unmeasurable) covariates.

5.2. Propensity and instrumental variable approaches are not a

magic wand

A common assumption is that propensity methods somehow

provide better adjustment for confounding than traditional

multivariable methods. Except in certain rare circumstances,

such as when the number of covariates is large relative to the

number of events, propensity methods give extremely

similar results to multivariable regression. Similarly, instru-

mental variables analyses depend on the availability of a

good instrument, which is less common than is often

assumed. In many cases, the instrument is not strongly

associated with the intervention, leading to underestimate of

treatment effects, or the analysis leads to a very large increase

in the 95% CI, leading to loss of precision.

5.3. Discrimination is a property not of a multivariable model

but rather of the predictors and the data set

Model building is generally seen as a process of fitting

coefficients; however, discrimination is largely a property

of what predictors are available. For instance, we have

excellent models for prostate cancer outcome primarily

because Gleason score is very strongly associated with

malignant potential. In addition, discrimination is highly

dependent on how much a predictor varies in the data set.

As an example, a model to predict erectile dysfunction that

includes age will have much higher discrimination for a

population sample of adult men than for a group of older

men presenting at a urology clinic, where the variation in

lower than the population as a whole. Authors need to

consider these points when drawing conclusions about the

discrimination of models.

5.4. Correction for overfit is strongly recommended for internal

validation

In the same way that it is easy to predict last week’s

weather, a prediction model generally has very good

properties when evaluated on the same data set used to

create the model. This problem is generally described as

overfit. Various methods are available to correct for overfit,

including cross-validation and bootstrap resampling. Note

that such methods should include all steps of model

building. For instance, if an investigator uses stepwise

methods to choose which predictors should go into the

model and then fits the coefficients, a typical cross-

validation approach would be (1) to split the data into 10

groups, (2) to use stepwise methods to select predictors

using the first 9 groups, (3) to fit coefficients using the first 9

groups, (4) to apply the model to the 10th group to obtain
predicted probabilities, and (5) to repeat steps 2–4 until all

patients in the data set have predicted probability derived

from a model fitted to a data set that did not include that

patient’s data. Statistics such as the AUC are then calculated

using the predicted probabilities directly.

5.5. Calibration is nearly always excellent on internal

validation

It is rarely worth reporting calibration for a model created

and tested on the same data set, even if techniques such as

cross-validation are used.

5.6. Calibration is a property not of a multivariable model but

rather of the relationship between the model and a data set

A model cannot be inherently ‘‘well calibrated.’’ All that can

be said is that predicted and observed risk are close in a

given data set, representative of a given type of population.

5.7. The optimal cut-point for a test or model cannot be derived

from the receiver operating characteristic curve

It is sometimes claimed that the optimal cut-point for a test is

the one closest to the top left-hand corner of the receiver

operating characteristic (ROC) curve. The problem with this

approach is that the ROC curve assumes that sensitivity and

specificity are equally important, but this is rarely, if ever, the

case.

5.8. Avoid reporting sensitivity and specificity for continuous

predictors or a model

Investigators often report sensitivity and specificity at a given

cut-point for a continuous predictor (such as prostate-

specific antigen [PSA] of 10 ng/ml) or report specificity at a

given sensitivity (eg, 90%). Reporting sensitivity and speci-

ficity is not of value because it is unclear how high sensitivity

or specificity would have to be in order to be ‘‘high enough’’ to

justify clinical use. Similarly, it is very difficult to determine

which of two tests, one with a higher sensitivity and the other

with a higher specificity, is preferable because clinical value

depends on the prevalence of disease and the relative harms

of a false-positive result compared with a false-negative

result. In the case of reporting specificities at fixed sensitivity,

or vice versa, it is all but impossible to choose the specific

sensitivity rationally. For instance, a team of investigators

may state that they want to know specificity at 80%

sensitivity because they want to ensure they catch 80% of

cases. But 80% might be too low if prevalence is high or too

high if prevalence is low.

5.9. Report the clinical consequences of using a test or a model

In place of statistical abstractions such as sensitivity and

specificity, or a ROC curve, authors are encouraged to

choose illustrative cut-points and then report results in

terms of clinical consequences. As an example, consider a

study in which a marker is measured in a group of patients
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undergoing biopsy. Authors could report that if a given level

of the marker had been used to determine biopsy, then a

certain number of biopsies would have been conducted and

a certain number of cancers found and missed.

5.10. Avoid stepwise selection

Data-dependent variable selection in regression models

has a number of undesirable properties, increasing the risk

of overfit and making many statistics, such as the 95% CI,

highly questionable. Use of stepwise selection should be

restricted to a limited number of circumstances, such as

during the initial stages of developing a model, if there is

poor knowledge of what variables might be predictive.

5.11. Avoid reporting estimates such as odds or hazard ratios

for covariates when examining the effects of interventions

In a typical observational study, an investigator might

explore the effects of two different approaches to radical

prostatectomy on recurrence while adjusting for covariates

such as stage, grade, and PSA. It is rarely worth reporting

estimates such as odds or hazard ratios for the covariates. For

instance, it is well known that a high Gleason score is strongly

associated with recurrence; reporting a hazard ratio of say,

4.23, is not helpful.

5.12. Rescale predictors to obtain interpretable estimates

Several predictors have moderate association with outcome

and can take a large range of values. This can lead to

uninterpretable estimates. For instance, the odds ratio per

year of age might be given as 1.02 (95% CI, 1.01–1.02;

p < 0.0001). It is not helpful to have the upper bound of a

confidence interval be equivalent to the central estimate; a

better alternative would be to report an odds ratio per 10 yr

of age. This is simply achieved by creating a new variable

equal to age divided by 10 to obtain an odds ratio of 1.16

(95% CI, 1.10–1.22; p < 0.0001) per 10-yr difference in age.

5.13. Avoid reporting both univariate and multivariable

analyses unless there is a good reason

Comparison of univariate and multivariable models can be of

interest when trying to understand mechanisms. For

instance, if race is a predictor of outcome on univariate

analysis but not after adjustment for income and access to

care, one might conclude that poor outcome in black patients

is explained by socioeconomic factors. However, the routine

reporting of estimates from both univariate and multivari-

able analysis is discouraged.

5.14. The net reclassification improvement is an invalid

statistic for the evaluation of markers and models

It has been amply demonstrated in the methodological

literature than the net reclassification improvement pro-

vides faulty inference and an estimate that is difficult to

interpret.
5.15. Interpret decision curves with careful reference to

threshold probabilities

It is insufficient merely to report that, for instance, ‘‘the

marker model had highest net benefit for threshold probabil-

ities of 35–65%’’. Authors need to consider whether those

threshold probabilities are rational. If the study reporting

benefit between 35–65% concerned detection of high-grade

prostate cancer, few if any urologists would demand that a

patient have at least a one-in-three chance of high-grade

disease before recommending biopsy. The authors would

need to conclude that the model was not of benefit.

6. Conclusions and interpretation

6.1. Draw a conclusion

Conclusion sections are often simply a restatement of the

results. For instance, ‘‘A statistically significant relationship

was found between body mass index (BMI) and disease

outcome’’ is not a conclusion. Authors instead need to state

the implications for research and/or clinical practice. For

instance, a conclusion section might call for research to

determine whether the association between BMI is causal

or make a recommendation for more aggressive treatment

of patients with higher BMI.

6.2. Avoid words such as ‘‘may’’ or ‘‘might’’ in conclusions

A conclusion that a novel treatment ‘‘may’’ be of benefit

would be untrue only if had been proven that the treatment

was ineffective. Indeed, that the treatment may help would

have been the rationale for the study in the first place. Using

words such as may in the conclusion is equivalent to stating,

‘‘We know no more at the end of this study than we knew at

the beginning’’—reason enough to reject a paper for

publication.

6.3. Do not confuse statistical and clinical significance

A small p value means only that the null hypothesis has

been rejected. This may or may not have implications for

clinical practice. That a marker is a statistically significant

predictor of outcome does not imply that treatment

decisions should be made on the basis of that marker.

Similarly, a statistically significant difference between two

treatments does not necessarily mean that the former

should be preferred to the latter. Authors need to justify any

clinical recommendations by carefully analyzing the clinical

implications of their findings.

6.4. Avoid pseudo-limitations

Authors commonly describe study limitations in a rather

superficial way, such as, ‘‘Small sample size and retrospec-

tive analysis are limitations.’’ But a small sample size may

be immaterial if the results of the study are clear. For

instance, if a treatment or predictor is associated with a very

large odds ratio, a large sample size might be unnecessary.
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Similarly, a retrospective design might be entirely appro-

priate, as in the case of a marker study with very long-term

follow-up, and have no discernible disadvantages compared

with a prospective study. Discussion of limitations should

include both the likelihood and the effect size of possible

bias.

6.5. Do not confuse outcome with response

Investigators often compare outcomes in different sub-

groups of patients all receiving the same treatment. A

common error is to conclude that patients with poor

outcome are not good candidates for that treatment and

should receive an alternative approach. This recommenda-

tion confuses differences between patients and differences

between treatments. As a simple example, patients with

large tumors are more likely to recur after surgery than

patients with small tumors, but that cannot be taken to

suggest that resection is not indicated for patients with

tumors greater than a certain size. Indeed, surgery is

generally more strongly indicated for patients with

aggressive (but localized) disease, and such patients are

unlikely to do well on surveillance.

6.6. Do not draw conclusions based on investigator-specified

cut-points

Investigators often compound the problem of categorization

of continuous variables by drawing conclusions based

on their categorization. For instance, an investigator might

examine surgical outcomes by PSA using a cut-off of

10 ng/ml. If differences were shown between high- and

low-PSA subgroups, it would be unsound to then conclude

that patients with PSA �10 ng/ml should be subject to

different treatment than those with PSA < 10 ng/ml, because

it was the investigator who chose the cut-point. Similar

results would likely have been found for a cut-point of

9 ng/ml, 11 ng/ml, or even 13.67 ng/ml, but that does not

make those justifiable clinical decision rules. A similar error

has been made for studies of the learning curve, dividing

patients into two groups depending on whether the surgeon

had >100 prior cases, finding differences between groups,

and then concluding that ‘‘the learning curve is 100.’’

Volume–outcome studies have also been beset by the

problem of investigator-determined cut-points. For instance,

annual surgical volume might be divided into quartiles, with

the upper quartile being about 10 cases. It would be

unjustified, however, to state that urologists should conduct

at least 10 cases per year.

6.7. Be cautious about causal attribution

It is well known that ‘‘correlation does not imply causation,’’

but authors often slip into this error in making conclusions.

The introduction and methods sections might insist that the

purpose of the study is merely to determine whether there

is an association between, say, treatment frequency and

treatment response, but the conclusions may imply that

more frequent treatment would improve response rates.
7. Concluding remarks

These guidelines are not intended to cover all medical

statistics but rather the statistical approaches most

commonly used in papers submitted to European Urology.

It is quite possible for a paper to follow all of the guidelines

yet be statistically flawed or to break numerous guidelines

and still be statistically sound. On balance, however, the

reporting, analysis, and interpretation of clinical urologic

research will be improved by adherence to these guidelines.
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